H(t)=-4.9t^2+500

Simple and best practice solution for H(t)=-4.9t^2+500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+500 equation:



(H)=-4.9H^2+500
We move all terms to the left:
(H)-(-4.9H^2+500)=0
We get rid of parentheses
4.9H^2+H-500=0
a = 4.9; b = 1; c = -500;
Δ = b2-4ac
Δ = 12-4·4.9·(-500)
Δ = 9801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9801}=99$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-99}{2*4.9}=\frac{-100}{9.8} =-10+2/9.8 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+99}{2*4.9}=\frac{98}{9.8} =10 $

See similar equations:

| (5x-2)^2=64 | | -9=10+r | | ?x=9=54 | | 180=108+37+(9x-1) | | x+3x245-9(x-290x29)=9 | | m4=-6 | | x2-16x+100=0 | | -4+(-b)=1 | | -3=x/4+9 | | 6t-9=4t | | –7−9q=–8q | | 12+5x=4(−x+4)−31 | | 5.8=1.1k | | 5x+22=-3 | | 4(v-3)-9=-4(-6v+4)-5v | | -3=x|4+9 | | 21+x/2=7 | | -11=1/5x | | t–11=25 | | X²+2x+6x=180 | | 50+3.6=y | | 10-50y=55 | | 4-(2y+5)=-2y+9 | | F=100-4x | | -7x(x+4)=14 | | d10=9 | | 4m+4m+8-7=6m+2m+6-7 | | -2+x=-57/20 | | 2n+4-1=5 | | 12+19x=3(14x+22)-x | | 6x+8(x+1)=148 | | 122+4a-8+8a-10+a=360 |

Equations solver categories